Differentiability of Torsion Theories

نویسنده

  • Lia Vaš
چکیده

We prove that every perfect torsion theory for a ring R is differential (in the sense of [2]). In this case, we construct the extension of a derivation of a right R-module M to a derivation of the module of quotients of M . Then, we prove that the Lambek and Goldie torsion theories for any R are differential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Higher Derivations to Rings and Modules of Quotients

A torsion theory is called differential (higher differential) if a derivation (higher derivation) can be extended from any module to the module of quotients corresponding to the torsion theory. We study conditions equivalent to higher differentiability of a torsion theory. It is known that the Lambek, Goldie and any perfect torsion theories are differential. We show that these classes of torsio...

متن کامل

From torsion theories to closure operators and factorization systems

Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].

متن کامل

A note on (α, β)-higher derivations and their extensions to modules of quotients

We extend some recent results on the differentiability of torsion theories. In particular, we generalize the concept of (α, β)-derivation to (α, β)higher derivation and demonstrate that a filter of a hereditary torsion theory that is invariant for α and β is (α, β)-higher derivation invariant. As a consequence, any higher derivation can be extended from a module to its module of quotients. Then...

متن کامل

Torsion Theories for Finite Von Neumann Algebras

The study of modules over a finite von Neumann algebra A can be advanced by the use of torsion theories. In this work, some torsion theories for A are presented, compared and studied. In particular, we prove that the torsion theory (T,P) (in which a module is torsion if it is zero-dimensional) is equal to both Lambek and Goldie torsion theories for A. Using torsion theories, we describe the inj...

متن کامل

Torsion Theories for Algebras of Affiliated Operators of Finite Von Neumann Algebras

The dimension of any module over an algebra of affiliated operators U of a finite von Neumann algebra A is defined using a trace on A. All zero-dimensional U-modules constitute the torsion class of torsion theory (T,P). We show that every finitely generated U-module splits as the direct sum of torsion and torsion-free part. Moreover, we prove that the theory (T, P) coincides with the theory of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007